最新网络赌博网站-国际网络赌博网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

宝都棋牌下载| 大发888娱乐城casinolm0| 秭归县| 赌博百家乐官网作弊法| 百家乐官网对保| 做生意佩戴什么纳财| 手机棋牌游戏下载| 百家乐官网手机游戏下载| 百家乐有多少种游戏| 皇冠国际足球| 百家乐官网赌博软件下载| 百家乐单跳投注法| 顶级赌场手机版| 做生意选店铺位置| 百家乐画面方法| 大玩家娱乐城开户| 开心8百家乐娱乐城| 百家乐官网真钱娱乐| 百家乐官网技巧之微笑心法| 百家乐桌子租| 百家乐官网神仙道礼包| 基础百家乐博牌规| 百家乐官网翻天在线观看| 东港市| 百家乐牡丹娱乐城| 百家乐庄不连的概率| 百家乐官网免費游戏| 大发888真钱游戏平台| 坐乾向巽24山向择吉| 大发888 34| 奇迹百家乐官网的玩法技巧和规则 | 顶级赌场| 百家乐建材| 风水24山| 百家乐官网赌机厂家| 金龍娱乐城| 大发888亚洲游戏平台| 百家乐官网洗码| 百家乐官网路单破解软件| 顶级赌场手机版| 大发888娱乐城官方下载安装|