最新网络赌博网站-国际网络赌博网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

數學與統計學院"21世紀學科前沿"系列學術報告預告

Second-order Least Squares Method for High-dimensional Variable Selection

編輯: 數學學院 董學敏 時間:2015-06-01
報告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報告時間:2015年6月2日下午3:00-4:00
報告地點:良鄉1-208
報告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
大哥大百家乐官网的玩法技巧和规则 | 清河县| 百家乐网上真钱赌场娱乐网规则| 易球百家乐官网娱乐城| 香港六合彩彩色图库| 真人百家乐平台排行| 百家乐官网出千方法技巧| 大发888手机版下载| 百家乐系统足球博彩通| 真人百家乐官网视频| 防城港市| 大发888 娱乐场| 百家乐送现金200| 百家乐官网筹码套装包邮| 百家乐官网怎么样投注| 盐城棋牌游戏中心| 百家乐筹码皇冠| 现场百家乐玩法| 百家乐怎么赢博彩正网| 百家百家乐官网官网网站| 樱桃木百家乐官网桌| 百家乐官网公式计算| 大发888怎么修改密码| 大发888怎么玩| 百家乐怎样玩才会赢钱| 大世界百家乐娱乐城| 新乐园百家乐官网娱乐城| 作弊百家乐官网赌具| 最好的百家乐官网好评平台都有哪些| 大发888官方网| 大发888娱乐城大发888大发网| 盈得利百家乐官网娱乐城| 百家乐官网英皇娱乐场| 百家乐官网最佳注码法| 百家乐官网下注稳赢法| 百家乐官网玩法既规则| 百家乐官网里面的奥妙| 电子百家乐| 吉木萨尔县| 美国百家乐官网怎么玩| 博九网百家乐官网现金网|