最新网络赌博网站-国际网络赌博网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

數學與統計學院"21世紀學科前沿"系列學術報告預告

Second-order Least Squares Method for High-dimensional Variable Selection

編輯: 數學學院 董學敏 時間:2015-06-01
報告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報告時間:2015年6月2日下午3:00-4:00
報告地點:良鄉1-208
報告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
7月24日风水| 依兰县| 温州百家乐的玩法技巧和规则 | 百家乐官网群sun811| 鸿运娱乐| 百家乐心得分享| 如意坊娱乐城| 百家乐类游戏网站| 必博娱乐| 在线百家乐纸牌游戏| 百家乐官网游戏看路| 黄金城百家乐游戏| 孙吴县| 678百家乐博彩娱乐场开户注册 | 德州扑克筹码定做| 百家乐官网玩法说| 安福县| 信誉百家乐平台| 百家乐官网如何看牌| 手机百家乐能兑换现金棋牌游戏| 广州百家乐官网娱乐场开户注册 | 百家乐官网出千手法| 大发888破解老虎机| 必博百家乐游戏| 澳门百家乐官网怎么看小路| 亚洲顶级赌场 网投领导者| 百家乐娱乐城公司| 罗马百家乐官网娱乐城| 大发888游戏平台403| 百家乐最新破| 赌百家乐官网2号破解| 百家乐官网稳赚打法| 大发888大发888官网| 百家乐博娱乐赌百家乐的玩法技巧和规则| 粤港澳百家乐官网娱乐平台| 足球投注网址| 威尼斯人娱乐城海立方| 百家乐必胜下注法| 百家乐官网庄闲和赢率| 百家乐官网巴厘岛娱乐城| 皋兰县|