最新网络赌博网站-国际网络赌博网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
百家乐投注网| 百家乐的必赢术| 澳门百家乐官网娱乐城送体验金| 362百家乐官网的玩法技巧和规则| 威尼斯人娱乐城最新网址| 六合彩查询| 百家乐专打单跳投注法| 金濠国际娱乐城| 百家乐游戏机出千| 澳门赌场攻略| 玩百家乐游戏经验| 大发888怎么玩不了| 古浪县| 澳门百家乐官网论坛| bet365最快最稳定| 百家乐注册开户| 威尼斯人娱乐城筹码| 网上梭哈| 凯发百家乐是否是程序控制| 澳门百家乐官网家用保险柜 | 投注平台网| 百家乐技巧论坛| 百家乐官网桌折叠| 百家百家乐官网网站| 百家乐官网那里可以玩| 葡京百家乐官网注码| 百家乐真人百家乐皇冠开户| 百家乐网页qq| 皇家百家乐官网的玩法技巧和规则| 顶尖娱乐| 筹码百家乐的玩法技巧和规则 | 百家乐官网网上投注作弊| 免费棋牌游戏| 金钻娱乐| 大发888新澳博| 菲律百家乐太阳城| 乐百家乐官网彩现金开户| 德州扑克保险赔率| 豪华百家乐桌子厂家| 澳门百家乐官网路单| 视频百家乐官网破解|