最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告0條 | 上傳規范

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

作者:孫紅權 ?? 來源:數學與統計學院?? 發布日期:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 


大发888娱乐城3403| 皇冠现金网娱乐城| 永利高娱乐场| 百家乐官网博彩安全吗| 蓝盾百家乐代理打| 百家乐官网网上投注作弊| 百家乐棋| 斗地主百家乐官网的玩法技巧和规则 | 查风水24山| 百家乐官网投注心得| 凯发百家乐是否是程序控制| 南京百家乐官网菜籽油| 新葡京娱乐城开户| 新葡京百家乐娱乐城| 世嘉百家乐的玩法技巧和规则| 唐人街百家乐官网的玩法技巧和规则 | 新澳门娱乐城官网| 百家乐海滨网现场| CEO百家乐官网的玩法技巧和规则 喜达百家乐官网的玩法技巧和规则 | 百家乐官网游戏解码器| 泰兴市| 全讯网新2开户| 百家乐博之道娱乐城| 古交市| 九州百家乐官网的玩法技巧和规则 | 机械百家乐技巧| 现场百家乐官网能赢吗| 灌云县| ican博彩通| 百家乐平一直压庄| 百家乐投注网址| 汇丰百家乐官网娱乐城| 百家乐官网投资心得| 黄金岛棋牌游戏下载| 总统百家乐的玩法技巧和规则| 百家乐开和几率| 百家乐网络投注| 百家乐官网游戏介绍与分析| 百家乐官网高手看百家乐官网 | 大发888怎么下载不了| 大发888娱 太阳城|