最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐存在千术吗| 百家乐娱乐平台网77scs| 百家乐官网投法| 诚信百家乐平台| 澳门百家乐官网鸿福厅| 十三张百家乐的玩法技巧和规则| 买百家乐官网程序| 棋牌室高尔夫娱乐场| 最好的百家乐论坛| 帝豪百家乐官网利来| 真人百家乐软件云南景| 百家乐官网专业豪华版| 大发888官网官方下载| 百家乐官网游戏机技| 全讯网体育| 百家乐注册开户送彩金| 皇冠百家乐官网赢钱皇冠| 六合彩官方网| 百家乐筹码防伪套装| 菲律宾百家乐游戏| 百家乐官网智能系统| 乐九百家乐官网现金网| 大发888娱乐城下载平台| 静安区| 德州扑克在线玩| 百家乐必胜打| 澳门百家乐真人版| 金宝博网站| 蓝盾百家乐赌城| 百家乐天天赢钱| 柬埔寨百家乐官网的玩法技巧和规则 | 扑克百家乐官网麻将筹码防伪| 百家乐官网投注杀手| 百家乐官网如何看面| 豪门娱乐| 大发888投注网| 游艇会百家乐的玩法技巧和规则| 百家乐棋牌作弊器| 跨国际百家乐官网的玩法技巧和规则 | 百博百家乐的玩法技巧和规则| 百家乐赢家打法|