最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

葡京百家乐官网注码 | 六合彩印刷图库| 利高百家乐的玩法技巧和规则| 大发888娱乐场官方下载| 狮威百家乐娱乐网| 百家乐赌博论坛| 大发888yule| KK百家乐现金网| 百家乐发牌规| 怎样打百家乐的玩法技巧和规则| 双柏县| 百家乐现金网排名| 大发888在线娱乐游戏| 职业赌百家乐官网技巧| 百家乐庄闲赢负表| 百家乐官网长龙有几个| 明陞百家乐娱乐城| 真人百家乐官网宣传| 百家乐路单破解方法| 百家乐官网娱乐城官方网| 万豪国际娱乐城| 什么是百家乐官网赌博| 新锦江百家乐官网娱乐网| 霍山县| 百家乐平台哪个有在线支付呢| E胜博| 威尼斯人娱乐网代理注| 百家乐赌场玩法技巧| 百家乐官网高手长胜攻略| 大发888网页版| 2016虎和蛇合作做生意| 网上百家乐有哪些玩法| 百家乐官网和| 百家乐大娱乐场开户注册| 百家乐官网赌博怎么玩| 赌百家乐的体会| 网上百家乐官网好玩吗| 网络百家乐真假| 百家乐官网网上真钱娱乐平台| 大发扑克网站| 新乐园百家乐官网娱乐城|