最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

送现金百家乐的玩法技巧和规则 | 百家乐官网真人游戏网| 百家乐实战技术| 网上百家乐官网公式| 威尼斯人娱乐城备用地址| 阳宅风水24向详解| 百家乐官网赌场国际| 大发888 dafa888 octbay| 百家乐787| 百家乐官网投注综合分析法| 奔驰娱乐城开户| 百家乐破解分| 百家乐统计| 百家乐官网套路| 百家乐官网下注时机| 998棋牌游戏| 真人百家乐体验金| 百家乐官网桌套装| 诚信百家乐官网平台| 百家乐官网单跳双跳| 大发888手机版下载安装| 巴特百家乐的玩法技巧和规则 | 新世纪| 大发888大发娱乐场| 最大的百家乐网站| 百家乐英皇赌场娱乐网规则| 网上百家乐官网游戏玩法 | 百家乐官网龙虎| 百家乐官网游戏奥秘| 澳门赌博网站| 网络博彩公司| 波克棋牌完整版下载| 大发888娱乐城qq服务| 百家乐官网投住系统| 百家乐官网闲单开多少| 百家乐官网真人荷官| 长沙县| 百家乐官网出千原理| 太阳城开户网| 大众娱乐城| 龙岩市|