最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

澳门百家乐然后赢| 宝龙娱乐城官网| 川宜百家乐软件| 大发888心水论坛| 百家乐官网游戏大| 赌百家乐2号破解| 巨星百家乐官网的玩法技巧和规则| 欢乐谷娱乐城官网| 邯郸百家乐园怎么样| 百家乐官网赌法| 大发888大家赢娱乐| 网上百家乐看牌器| 百家乐官网百家乐官网视频游戏世界| 威尼斯人娱乐信誉| 百家乐如何玩法| 大发888在线开户| 百家乐是如何骗人的| 百家乐官网龙虎台布| 德州扑克 让牌| 百家乐赌法| 678百家乐官网博彩娱乐网| 金宝博188| 百家乐娱乐平台网77scs| 百家乐官网园天将| 百家乐官网视频游戏网址| 幸运水果机游戏下载| 百家乐视频游戏道具| 太阳城百家乐官网娱乐开户 | 百家乐官网光纤洗牌机如何做弊| 顶级赌场手机版官方| 百家乐看大路| 网上百家乐注册彩金| 百家乐官网龙虎斗| 鹿泉市| 澳博线上娱乐| 大发888手机登录平台| 名仕百家乐的玩法技巧和规则 | 百家乐官网游戏出售| 金宝博188| 大发888新网址| 威尼斯人娱乐场钓鱼网站|