最新网络赌博网站-国际网络赌博网

今天是
今日新發(fā)布通知公告0條 | 上傳規(guī)范

“數(shù)通古今,學貫中外”系列講座【Renming-Song】

作者:高冰 ?? 來源:數(shù)學學院?? 發(fā)布日期:2012-07-20

主講人:Renming-Song
講座題目:Harnack principle for symmetric stable processes and subordinate Brownian motion
時  間:2012年7月23,24,25, 27日上午10:40~12:00, 及7月30, 31日上午9:00~11:00.
地  點:研究生樓209A
主講人介紹
  Renming-Song received the B.S. degree in mathematics in 1983 and M.S. degree in Mathemtics in 1986, both from Hebei University, Baodin, China. He received his Ph.D. degree in Mathematics from the University of Florida, Gainesville in 1993. He was a visiting assistant professor at Northwestern University and the University of Michigan before moving to the University of Illinois in 1997, where he is a Professor of Mathematics since 2009.
  His research interests include stochastic analysis, Markov processes, potential theory and financial mathematics. Renming Song has published more than 77 research papers, in top mathematical Journals.
主要內(nèi)容:Recently many breakthroughs have been made in the potential theory of symmetric stable processes and subordinate Brownian motions. In all these recent developments, the boundary Harnack principle played an essential role. In this series of lectures I plan to give a self-contained account of the boundary Harnack principle for symmetric stable processes. Then I will extend the argument to obtain the boundary Harnack principle
for a large class of subordinate Brownian motions.

Here are some references:

[1]. K. Bogdan. The boundary Harnack principle for the fractional Laplacian. Studia Math. (1997), 43--80.
[2]. P. Kim, R. Song and Z. Vondracek. Boundary Harnack Principle for Subordinate Brownian Motions. Stoch. Proc. Appl. 119 (2009), 1601--1631.
[3]. P. Kim, R. Song and Z. Vondracek. Potential theory of subordinate Brownian motions revisited. To appear in Stochastic Analysis and Applications to Finance--Essays in Honour of Jia-an Yan, edited by Tusheng Zhang and Xunyu Zhou. World Scientific,2012.
[4]. R. Song. Potential theory of subordinate Brownian motions.
http://open.nims.re.kr/download/probability/song.pdf
[5]. R. Song and J.-M. Wu. Boundary Harnack inequality for symmetric stable processes. J. of Funct. Anal. 168 (1999),403-427.


德州扑克入门| 德州百家乐赌博规则| 线上真人游戏| 百家乐官网的各种打法| 大发888娱乐城下载lm0| 百家乐官网国际娱乐平台| 全讯网新闻| 百家乐官网vshow| 大发888官网df888| 金都百家乐官网的玩法技巧和规则 | 大发888博必发| 君怡百家乐官网的玩法技巧和规则 | 大发888手机版亚洲城| 百家乐官网api| 金花娱乐城注册| 网上百家乐庄家有赌场优势吗| 百家乐破解策略| 百家乐官网信誉平台现金投注| 百家乐群dmwd| 百家乐官网平预测软件| 百家乐官网游戏机压法| 大发888娱乐场怎么才能赢到钱| 成都百家乐官网的玩法技巧和规则| 网上真钱斗地主| 百家乐永利娱乐| 百家乐官网开户过的路纸| 浏阳市| 大发888官网网址| 百家乐网络游戏平台| 百家乐官网游戏程序出售| 大发888娱乐城官方免费下载| 单张百家乐论坛| 线上百家乐官网| 建德市| 百家乐的桌子| 博发百家乐官网的玩法技巧和规则| 百家乐官网是咋玩法| 大发888什么赢钱快| 百家乐baccarat| 百家乐官网是否有规律| 大发888下载专区|