最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

大发888真钱游戏娱乐城下载 | 3U百家乐官网的玩法技巧和规则| 百家乐官网游戏台| 七匹狼百家乐的玩法技巧和规则| 大发888客户端| 百家乐官网视频看不到| 百家乐玩法既规则| 顶级赌场官方直营网| 百家乐官网下载游戏| 澳门百家乐技巧| 大发888开户注册首选| 百家乐盛大娱乐城城| 百家乐官网斗牛稳赚| 樱桃木百家乐桌| 百家乐官网太阳城球讯网| 真人百家乐做假| 新花园百家乐官网的玩法技巧和规则| 大发888娱乐城维护| 赌博中百家乐什么意思| 百家乐官网美女视频| 免费下百家乐赌博软件| 威斯汀百家乐官网的玩法技巧和规则| 元游棋牌官网| 百家乐官网3珠路法| 威尼斯人娱乐城 线路畅通中心| 百家乐官网麻关于博彩投注| 菲律宾云顶国际| 百家乐太阳城菲律宾| 皇家娱乐场| 百家乐最好的投注方法| 百家乐官网视频游戏客服| 百家乐官网视频打牌| 德州扑克怎么算牌| 百家乐免费改| 百家乐官网平台| 昆明百家乐官网装修装潢有限公司| 博彩网百家乐全讯网| 百家乐官网扑克牌耙| 百家乐庄闲和概率| 百家乐官网菲律宾| 百家乐在线投注网|