最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐路单网下载| 威尼斯人娱乐网赌| 百家乐怎么玩高手| 宝博百家乐娱乐城| 利澳百家乐的玩法技巧和规则| 威尼斯人娱乐备用622| 皇冠娱乐场| 百家乐官网开户送十元| 百家乐官网系统足球博彩通 | 皇冠赔率| 辽源市| 百家乐官网改单软件| 新锦江百家乐官网娱乐场| 百家乐路单破解器| 百家乐拍照看| bet365备用网| 百家乐官网游戏软件出售| 沙龙百家乐官网赌场娱乐网规则| 单机百家乐在线小游戏| 大发888最新网址| 安徽省| 永利百家乐官网赌场娱乐网规则| 百家乐游戏技巧| 大发888熊之舞怎么玩| 百家乐官网神仙道官网| 怎么赌百家乐官网能赢| 百家乐顶| 宝马会娱乐城网址| 百家乐官网博送彩金18| 博狗百家乐开户| 老虎机上分器| 宾利百家乐官网游戏| 百家乐官网群shozo权威| 联合百家乐的玩法技巧和规则| 大发888娱乐场下载 注册| 百家乐官网翻天粤qvod| 澳门百家乐娱乐城送体验金| 大发888官网df888esbgfwz| 海林市| 正品百家乐官网玩法| 深圳太阳城酒店|