最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐真人百家乐皇冠开户| 百家乐官网真人游戏攻略| 大发888pt| 百家乐官网视频世界| 24山什么来龙是真龙| 贝博百家乐的玩法技巧和规则 | 网络百家乐官网怎么作弊| 百家乐园游戏庄闲| 虹乐棋牌是真的吗| 真人百家乐官网视频赌博| 缅甸百家乐赌城| 百家乐官网路单破解软件| 网络百家乐玩法| 百家乐官网交流群号| 海威百家乐赌博机| 洛宁县| 百家乐赌博策略论坛| 博士百家乐官网现金网| 百家乐真人秀| 大发888设置| 百家乐官网好不好| 澳门百家乐官网赢钱窍门| 巴西百家乐的玩法技巧和规则| 百家乐官网破解仪恒达| 大发888赌博网站| 百家乐官网之三姐妹赌博机| 免费百家乐倍投工具| 怎样玩百家乐官网才能| 大发888官方授权网| 百家乐官网下注技巧| 大发888网页在线游戏| 游戏机百家乐官网的技巧| 百家乐玩的技巧| 安阳百家乐官网赌博| 百家乐翻天粤语快播| 百家乐官网路单破解软件| 在线百家乐作| 百家乐官网赌博合作| 娱乐城注册送彩金100| 百家乐偷吗| 线上百家乐官网信誉|