最新网络赌博网站-国际网络赌博网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

娱乐场游戏| 在线真钱游戏| 德州扑克3d豪华版| 大发888出纳柜台 2014| 千阳县| 免费百家乐官网分析工具| 鸿发娱乐| 百家乐官网庄9点| 大发888二十一点| 百家乐官网存1000送| 有百家乐的棋牌游戏| 365体育投注| 合乐8百家乐娱乐城| 尊龙百家乐官网娱乐场| 国际娱百家乐的玩法技巧和规则| 百家乐官网送1000 | 最好百家乐官网的玩法技巧和规则| bet365体育在线投注| 百家乐老是输| 唐人街百家乐官网的玩法技巧和规则| bet365足球| 神话百家乐的玩法技巧和规则 | 百家乐赌场彩| 百家乐官网10法则| 玩百家乐官网的玩法技巧和规则| 博彩e族777| 威尼斯人娱乐城反水| 利都百家乐官网国际娱乐场开户注册 | 网上尊龙国际娱乐| 百家乐投注技巧| 上海玩百家乐官网算不算违法| 金都百家乐的玩法技巧和规则| 网上百家乐官网哪里开户| 皇冠网最新网址| 百家乐英皇娱乐城| 安桌百家乐官网游戏百家乐官网| 吉木萨尔县| 威尼斯人娱乐场送1688元礼金领取lrm| 百家乐龙虎台布| 百家乐破解软件真的有用吗| 百家乐任你博娱乐网|